IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Quadratic integration over the three-dimensional Brillouin zone

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys.: Condens. Matter 3 6721
(http://iopscience.iop.org/0953-8984/3/35/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 11/05/2010 at 12:30

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 3 (1991) 6721-6742. Printed in the UK

Quadratic integration over the three-dimensional
Brillouin zone
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Department of Theoretical Chemistry, Free University, De Boelelaan, 1081 HV
Amsterdam, The Netherlands

Received 24 September 1990

Abstract. A new method is described to evaluate integrals of quadratically interpolated
functions over the three-dimensional Brillouin zone. The method is based on the method of
the authors for analytic quadratic integration over the two-dimensional Brillouin zone. It
uses quadratic interpolation not only for the dispersion relation e(k), but for property
functions f{k) as well. The method allows a ‘machine accuracy’ evaluation of the integrals
and may therefore be regarded as equivalent to a truly analytic evaluation of the integrals.
It is compared to other methods of integral approximation by calculating tight-binding
Brillouin zone integrals using the same number of k-points for all methods. Also shown are
cohesive energy calculations for a number of elements. When the quadratic method is
compared to the commonly used linear method, it is found that far fewer k-points are needed
to obtain a desired accuracy.

1. Introduction

Calculation of properties of solids with m-dimensional translation symmetry (m =
1, 2, 3) requires the evaluation of integrals such as [1]

KE) =3, [ u0)6(E ~ ea(d) d" @)

or its derivative

KE) = aJ (E) _fall)

> jf..(k)a(E—s(k))d"*k s f e @

where Eis the energy for which the property has to be caiculated, the summation is over
the energy bands, Vis the volume of the first Brillouin zone, f,(k) is a property function
for the nth band, & and & are the step and delta function respectively, and ¢,(k) is the
dispersion relation for the nth band. If, for example, f,(k) = 1, f(E) is the density of
states for energy E: DOS(E). As can be seen from (1) and (2), J(E) is an integral over the
volume lying ‘below’ the surface E = £,(k}, whereas I(E) is an integral over the surface
E = g,(k). Energies for which |Ve,(k)| = 0 on the surface E = ¢,(k) are known as Van
Hove singularities. Generally, /(E) or dI(E)/dFE is infinite at Van Hove energies [2, 3].
Usually the analytical form of the functions f,(k) or £,(k) is not known, so the integrals
J(E) and I(E) have to be evaluated by numerical integration. As bandstructure cal-
culations are time consuming and the time needed for such calculations usually increases
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(a) | (b)

Figure 1. () Linear interpolation uses the values of the functions f(k) and £(k) in the &-points
at the corners of the primary tetrahedron. Quadratic interpolation uses the values of the
functions f{k) and £(k) in the k-points at the corners and the edges of the tetrahedron. (8) In
comparisons {see section 4) the same number of k-points should be used, so the primary

tetrahedron used in the quadratic interpolation is divided into eight smaller tetrahedra with
k-points at the corners in which linear interpolation can be used.

linearly with the number of k-points used, the question rises how the integrals /{ E) and
J(E) can be accurately evaluated using as few k-points as possible.

The method commonly used for the numerical evaluation of the integrals is the
following: the first Brillouin zone can always be partitioned into a number of so-calied
basic or primary simplices {triangles in two dimensions, tetrahedra in three dimensions).
The evaluation of the integrals /(£) and J(E) in one simplex is considered. If the k-points
for which the band structure calculation is performed are at the corners of the simplex,
it is possible to obtain a linear approximation to the dispersion relation £(k) and the
function f(k) using the known values at the corners. With these linear functions it is
possible to evaluate I(E) and J(E) analytically [4-10]. The linear approximation on
which this so-called linear tetrahedron method (LTM) is based, may be expected to be
more accurate when the size of the simplices decreases, i.e. the mesh of k-points becomes
finer. However, if E is at or close to a Van Hove singularity, it is well known that the
linear approximation breaks down and a quadratic approximation is essential [11, 12].
A quadratic approximation is obtained in the basic simplex if also the values of f{(k) and
£(k) are available at k-points on the midpoints of the edges (see figure 1}. Unfortunately,
it is not a simple matter to evaluate the integrals analytically if f{k) and £{k) in (1) and
(2) are substituted with quadratic polynomials. An overview of the methods found in
the literature is given in table 1, from which it appears that a fully quadratic method with
exact evaluation (i.e. to machine accuracy, either analytically or numerically) of the
integrals is not yet available for three-dimensional systems. We will argue below that
such a scheme isindeed highly desirable and will present an exact fully quadratic method
for three-dimensional systems in this paper.

For three-dimensional systems the two most important quadratic approaches to date
are the hydrid tetrahedron method (4tM) of MacDonald ef al {16] and the projective-
geometry method (PGM) of Methfessel eza/[17-19]. In the PGM the integrals are evaluated
exactly, using geometric methods, but only for a linear interpolation of f(k). We have
shown in the two-dimensional case [20], that significant improvement is obtained for
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Table 1. An overview of the methods found in the literature for the evaluation of the inteprals
I(E) and J(E). Shown is the order of interpolation of the functions £(k) and f{k), the type of
integral evaluation of /{E) and J(E) and the dimension m for which the method has been
implemented. The entries analytic and numerical stand for potentially exact evaluations in
the sense that machine accuracy can be obtained by judicious avoidance of build up and
round-off errors (analytic) or use of sufficient points in a standard (e.g. Gauss-Legendre)
one-dimensional numerical integration (numerical). The qualification ‘approximate’ for the
hybrid tetrahedron method is discussed in the text.

fik) &(k) I(E) NE) Abbreviation m

constant  linear analytic analytic 1,2,3 [14]
linear linear analytic analytic LT™ 1,2,3  [4-10]
linear quadratic  analytic numerical PGM 1,2,3 [17-19]
quadratic quadratic approXimate approximate HTM 1,2,3 [15,16)
quadratic quadratic  analytic numerical AQM 1,2 [20]

quadraticinterpolation of f(k) (the analytic quadratic method (Aam)). Understandably,
this improvement is particularly striking when f{(k) exhibits considerable variation over
the Brillouin zone. In this paper we will show that the same holds true for the three-
dimensional case (see figure 10 and compare to figure 7 of [20]).

The HTM is very attractive for its simplicity. Within a given primary tetrabedron the
quadratic approximations f,(k) and &,(k) to f(k} and e(k) are obtained. The integrals
I(E) and J(E) over the primary tetrahedron are then evaluated by subdividing the
primary tetrahedron into smaller ones and using the LTM in these secondary tetrahedra.
At the corners of the secondary tetrahedra the values of f,{(k) and £,(k) are used, so no
additional bandstructure calculations are needed. The HTM is in fact an approximate
numerical evaluation of the integrals /(E) and J(E), with f,(k) and £ (k) substituted for
ftk) and £(k), over the primary tetrahedron. MacDonald ez a used a subdivision of the
primary tetrahedron into 64 secondary ones, but this number may of course be increased
to achieve convergence of the ‘inner’ numerical integration. We would like to point out,
however, that the HTM, although a distinct improvement on the LTM™, runs into the same
kind of problem at Van Hove energies as the LTM itself. The linear approximation in the
secondary tetrahedrons partly cancels the effect of the quadratic approximation in: the
primary tetrahedron. This may be seen as follows. The essential shortcoming of the
linear approximation is its inability to describe a possible extremum of (k) somewhere
inatetrahedron. A quadratic approximation £,(k) to £(k) may however exhibit extrema,
and use of £,(k) in an exact evaluation of e.g. the integral I(E) (2) will then account for
the important effect of the occurring zeros |Ve, (k)| = 0 of the denominator. If however
the integral is evaluated by using the L™ in small secondary tetrahedrons, the extremum
of g,(k) will be missed again. The advantage of the HTM is of course that the number of
secondary tetrahedrons can be made large with little extra cost, but since nothing has
been done about the essential deficiency of the linear method one still expects the
convergence of the ‘inner’ numerical integration to obtain I(E£) and J{E) to be poor. To
illustrate these remarks a few examples may be in order.

In figure 2 we give an example of the convergence of the density of states bos(E) in
the HTM with the number of secondary tetrahedra in the ‘normal’ situation, that is, not
close to a Van Hove singularity. The primary tetrahedron here has corpers (0, 0, 0),
(1,0,0), (0, 1,0), and (0, 0, 1) and the dispersion relation is taken perfectly spherical,
(k) = x* + y* + z* (x stands for k,, etc), and £ = 0.5, so we are integrating over the
surface x? + y? + z? = 0.5, which has considerable but by no means unrealistic curvature
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Figure 2. (a) Percentage error in the density of states as a function of the number of secondary
tetrahedrain the HTMif the quadratic surface is the sphere x? + y* + z* = 0.5and the primary
tetrahedron is (0, 0, 0), (1, 0. 0}, (0. 1, 0), (0, Q, 1). (5) Convergence of the density of states
in the ‘standard’ ¥T™M method with the number of primary tetrahedra if the quadratic surface
is x* + y + z? = (.5 and the IBZ is the tetrahedron (0,0, 0), (1,0,0), (0, 1,0), (0,0, 1). A
primary tetrahedron is now always divided into 64 smaller tetrahedra,

over the primary tetrahedron. The energy is far from the Van Hove singularity at
E = 0. This example of course also demonstrates the performance of just the LTM.

As can be seen from figure 2(a) a reasonable {(~0.1%) accuracy may be obtained but
convergence is fairly slow and at least a division of the primary tetrahedron in 1024
smaller tetrahedra is required to obtain an accuracy of (only) 1%. It is possible to
improve the accuracy at a given number of subdivisions (but not the convergence rate),
obtaining an average accuracy of e.g. ~1% at 64 smaller tetrahedrons as in the work of
MacDonald et al [16] and Reser [13], by choosing smaller primary tetrahedrons so that
the constant-energy surface is effectively flatter. This is illustrated by the example in
figure 2(b) of the performance of the ‘standard’” HTM where a constant subdivision
into 64 tetrahedra for the ‘inner’ integration is used and only the number of primary
tetrahedrons is varied. (Here the tetrahedron with corners (0,0, 0), (1,0,0), (0, 1, 0),
and (0,0,1) may be looked upon as the IBZ that is being subdivided into primary
tetrahedrons). We note that a genuine quadratic method, such as Methfessel et af [17-
19] and the one we propose in this paper, would have zero error in this example of a
perfectly quadratic dispersion relation.

However, the hybrid method can fail particularly badly in the neighbourhood of Van
Hove singularities. The quadratic surface £ = x? + y? + 2? has a Van Hove singularity
for £ = 0. In figure 3(a) the convergence of the HTM with the number of secondary
tetrahedra is given for an energy very near this Van Hove singularity (E = 0.005). The
convergence is very slow indeed, the error being practically 100% up to quite large
numbers of secondary tetrahedra. The reason is that the part of the surface
x* 4+ y? + 2% = 0.005 lying within the primary tetrahedron is very small, and many
divisions into smaller tetrahedra are needed before the spherical surface is represented
with any accuracy by flat triangles in a number of small tetrahedra. The standard HTM
(figure 3(»)) does not do much better. A genuine quadratic method still gives zero error.

As another example figure 4 gives the convergence of the standard HTM and our
quadratic method with the number of primary tetrahedra if the dispersion relation is not
perfectly quadratic, but of the simple-cubic tight-binding type: e(x,y,z) =
—(cos(mx) + cos(my) + cos(nz))/3. There are Van Hove singularities for £ = —1 and

= —1/3 [21]. In the neighbourhood of E = —1 the dispersion relation approaches a
quadratic form, and our quadratic method yields zero error. The Van Hove singularity
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Figure 3. (a) Convergence of the density of states with the number of secondary tetrahedra
if the quadratic surface is the sphere x? + y? + z? = 0.005 and the primary tetrahedron is
(0,0,0),(1,0,0), (0,1,0), (0, 0, 1). (b} Convergence of density of states in the ‘standard’
HTM with the aumber of primary tetrahedra if the quadratic surface is x* + y2 + 22 = 0.005
and the Bz i5 (0, 0, 0), (1, 0,0}, (0,1,0), (0,0, 1). A primary tetrzhedron is then always
divided into 64 smaller tetrahedra.
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Figure 4. Convergence of the density of states with the number of primary tetrahedra for the

‘standard’ BTM and the aoM if the surface is —(cos{xx) + cos{zy) + cos(wz))/3 = —1/3 and
the 1Bz is the tetrahedron (0,0,0),(1,0,0),(1,1,0), (1,1, 1).

at E = —1/3 is not of quadratic type, but figure 4 shows that our method still gives good
convergence compared to the HTM.

It is to be realized that the correct handling of the Van Hove singularities of the
g,(k) in the primary tetrahedrons is not a matter of only academic interest since such
singularities occur frequently. We found for exampile in a moderately accurate band-
structure calculation on silicon (24 primary tetrahedra in the 1BZ) 47 quadratic Van Hove
singularities (i.e. |Ve (k)| = 0) in the four occupied valence bands.

It is clearly desirable to have a method to evaluate the surface integral {(E) in
three~-dimensional systems exactly (i.e. to machine accuracy) while using quadratic
interpolation for both f{k) and £(k). The volume integral J(E) can then also be done
exactly according to the procedure described in appendix 2 of [20]. Such a method is
presented in this paper. The method is based on a transformation of variables which
allows one to deal straightforwardly with the 8-function in I{(£). In section 2 we dem-
onstrate this method by applying it to the simple, commonly vsed linear interpolation.
Numerically this yields of course the same results as the likewise exact LTM. In section 3
the problems arising in the application of the method to quadratic interpolation are
discussed. It turns out that a transformation to new variables such that all integrals can
be done analytically is not always possible. The solution is to resort to a rumerical
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integration in one variable, which can be carried out to arbitrary accuracy using standard
one-dimensional numerical integration techniques. The remaining two-dimensional
integral can then be done analytically by the transformation-of-variables method as
already demonstrated in [20]. In section 4 we compare our method to other methods of
Bz integral evaluation. In the appendices some closely related subjects are treated.

2. Linear interpolation

When using linear interpolation for f(k) and £(k), we have

filx.y,2) = p1 + pax + psy + paz gx,y,z) = q, + qa2x + g3y + qa2. (3)

The constants p; and g; can be found by solving a system of four linear equations in four
unknowns. The integral (2) becomes

Iﬂk)é(ﬁ - e(k)) dk = jf;(x,y, 2)8(E — g/(x,y,2))dxdydz = .ZIPJI'(E) (4)
v v =
where

1(E) = [ (2,3, 2)(E = 213, y, 2)) e dy 2 (5)

andu(x,y,2) =1, x, y, zfori = 1, 2, 3, 4. Note that I,(E) isthe density of states DOS( E).
So if we can evaluate the integrals /,{ E), we can integrate any linear function fi(x, y, z)
over the linear surface E = g{x, y, z). To evaluate the integral

[ 1,3, D8(E - exta.y, ) dx dy iz ©
14

we make a change of variables from {(x, y, z) to {e, u, v)

x=fle,u,v) y =gle, u, v) z=h(e, u, v) N
such that

g(x, v, z) = £/(fle, u, v), gle, u, v), hle, u, v}) =e. 8

The transformation can be seen as a parametrization of all surfaces e = g(x, y, z) in the
parameters 4 and v. This transformation removes the 6-function, changing the integral
from an integral in three variables (x, y, z) to an integral in two variables (u, v).

f u(x,y, 2)8(E — ,(x,y, z)) dx dy dz

Vx.y.z
= j uie, u, V)OE —e )zE B4 ;d dudp
Vewr ’
a ? ¥
= f p,»(E,u,v)-aE:,+,3 , decudo ©)

Vu,u{s)

where V, (E) is the domain in (&, v) space corresponding to the part of the surface
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(k4,g4) (k‘,e.)
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(ka.é‘!) ks’ss)

(kl’eﬂ) (kl’el) (kZ’EQ) (kl’sl) (k2’£2)

Figure 5. The vectors used for the parametrization of the linear surface e = g(x, y, z) (the
prey-shaded plane) if (@) 6, <E<e <e;<e, (M) er<e; <E<gy<eqand (¢) g, <
< <E<e,.

E = g(x, y, z) lying within the tetrahedron. We try to find parametrizations such that
the integral (9) can be done analytically.

When using linear interpolation, the surfaces e = g{x, y, z) are planes and par-
ameterizations are easily given. We assume that the corners of the tetrahedron are
numbered such that g, < £, < &; < &,. Three cases have to be considered.

(i) £, < E < g, < &3 < &4 The intersection of the linear surface with the tetrahedron

consists of one triangle (figure 5(a)).
A parametrization for the surface e = g(x, y, z) is

e— & e_El_ €— &
k=k + k,— k) + ( ky — k) — - )
1 _51(4 1) ue3—sl(3 1) 34_81("4 ky)
€— & 78—81
+ ky — - -
0(82 — (ks — k) €4 — £, (k4 kl)) (10)

where0=su=<1,0<p =1 — u. The Jacobian is

6(x,y,z)= (8—81)2
(e, u,0) (g4 = &,)(e3 — £1)(e; — €1)

(11)
with
kox = ke Ky — ki kg =k,
V=tky —ky ky—ky ky—ky (12)
Ky =k ks —ky ke —ky,
which is six times the volume of the tetrahedron.
(ii) £, < £, < E < g3 < £4. The intersection of the linear surface with the tetrahedron

fnonsists of a quadrangle (two triangles) (figure 5(b)). For one triangle a parametrization
is

e"'fl 8"81 8—81
k=k, + ke — k) + ( — k) ~ -~
1 “31(4 1) +u £5 — £ (ks — k) £4— & (ks —kp)
e — Eq € — &
+v(k—k + ky — kp) —~ ky — )
O e RIS R N ORYS (13)
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The Jacobtan is
a(x,}’, Z) _ (6_81)(53 .....e)

= . 14

dle,u,v) (&4 —&))(E3 — £1)(€3 — €2) (14)

And for the other triangle:
_ e— & _ _ g« Eq _ _ [ €, _
b= byt 2 = k) G~ )+ T ) = S - )
e— 52 e - 81
- k; — ky) — ky —k

+ U((kz ki) + - 52( 53— k) — (k4 1)) (15)
with the Jacobian

a(x,y,z) _ (e—&r){es — €} (16)

e, u,v) (g4 — €2)(€3 — &2)(54 — &1)

(iil) £, < £2 < g3 < E < g,. This resembles case (i). The intersection of the linear
surface with the tetrahedron consists of one triangle (figure 5(c)) with parametrization

_ € — £y _ e— £y _ _ € £y _
k= ket S = k) i S - ) - S - )
[l ¥} _ _ e— £ _
o 5 - ) - S k- k) (17)
The Jacobian is
a(x1 yi z) — (e _ 84)2 (18)
e u,v) (g4 —&1)(6s — &) —&3)
In all cases, the transformations have the form
x = t,(E) + uu,(E) + vv.(E)
alx, y, 2}
y= ty(E) + MHJ,(E) + UUy(E) m = D(E) (19)
z =t,{E) + uu,{E) + vv,(F)
The integrals become
1 1-u
D
11=fd(E—s;(x,y,z))dxdydz=DJdufdv=§ - (204)
v 0 [
1 1-u
Iy = fxé(EI —glx,y,2))dedydz= Dfdu j do (t, + uu, + vv,)
v 0 0
M, +u, +u,
Bt to) (205)

6

1 1-u
I; = fyé(E- g(x,y,2))dxdydz = Djdu f do (¢, + uu, + vv,)
v 0 0

_ (3t, + u, + vy) D (20¢)

6
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Table 2. The various forms to which a quadratic surface can be reduced and the types of
surfaces they represent. All constants ¢, (i = 2, . . ., 9) are non-zero.

Surface

Type

£=g; + gsx% + gey? + g102°
£=q; +gsx* + qgy* + qp2°
=g, + quz + gsx* + qgy?
£=q; + gez + qsx? 4 gpp?
g=q, +gsx? + qg)*

g=q; + gsx? + ggy?

ellipsoid (g5, 45, ¢10 the same sign)

hyperboloid of one or two sheets (g5, g4, §1g DOt the same sign)
elliptic paraboloid (g5 and g4 the same sign)

hyperbolic paraboloid (g5 and g not the same sign)

elliptic cylinder (g5 and g, the same sign)

hyperbolic cylinder (g, and g; not the same sign)

=g + gy + gsi* parabolic cylinder
e=q +qx plane
e=q +qux? degenerate (two parallel planes)
E=q degenerate
1 1-u

14

=(3tz +u, +D,)D

I, = jzé(E —g/(x,y,2))dxdydz = Dfdu J. do (¢, + uu, + ov,)
0 o

(20d)

6

We conclude that the transformation of integration variables leads by direct algebraic
manipulation to the equations of the linear tetrahedron method.

3. Quadratic interpolation

When using quadratic interpolation for the functions f{k) and (k), we have
fo(%.¥,2) =Py + Pax + p3y + paz + psx® + pexy + prxz + pgy? + poyz + po2?
21
£4(%,¥,2) = 1+ q2X + @3y + quz + g% + qexy + @rxz + gy’ + goyz + g2,
(22)

The constants p;and g, can be found by solving a system of ten equations in ten unknowns
(see figure 1). The integral (2) becomes

16
[ 088 - e ak = [ £,65,9, 98 - ey, 3, N wryaz= S paE)  @3)
v v =1

where

1(E) = [ e, DO(E — £,(2,,2)) dw dy dz e

and u;(x,y,z)=1,x,y,z,x%, xy,xz,y%, yz, z* fori= 1,2, .. ., 10. So if we can evalu-
ate the integrals /(E), we can integrate any quadratic function f,(x, y, z) over the
quadratic surface £ = g,(x, y, z). If we apply an affine transformation

k=AK'+ 5 (25)
to the integrals (23), the functions f,(k) and &,(k) remain quadratic functions and the
volume of integration remains a tetrahedron. It is well known [22] that there always
exists an affine transformation such that ¢,(k) takes one of the forms given in table 2.
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If the coefficients g5, g and ¢, are non-zero (which is generally the case) and have
the same sign the surface is an ellipsoid. For all other combinations of signs the surface
is a hyperboloid of one or two sheets. According to our experience practically only the
cllipsoid (about 25% of all cases) and the hyperboloid of one or two sheets (about 75%
of all cases) occur.

Let us first try to follow the same procedure as for the linear approximation in the
previous section and for the two-dimensional quadratic case in [20]. We make a change
of variables from (x, y, z) to (e, u, v)

x = fle,u,v) y=gle, u,v) z=hie,u,v) (26)
such that
£4(x, ¥, 2) = £,(fle, u, v), gle, u, v), he,u, v)) =e. (27)

This transformation can be seen as a parametrization of all surfacese = £.(x, y, z) in the
parameters u and v. This transformation removes the d-function

J ti(x, ¥, 2)O(E — £,(x, y, z)) dxdy dz

Vieyr

a{x,y,2)

dedud
e o)

il

| wien08E-0
Veun

a(x,y,z)
e, u, v .=¢

!

f‘li(Es u, D)
Vi, o(E)

Forthe elliptic cylinder (see appendix 1), the hyperbolic cylinder, the parabolic cylinder,
the plane and the two degenerate cases parametrizations can be found such that integral
(28) can be done analytically. However, we have not been able to find such par-
ametrizations for the ellipsoid, the hyperboloid of one or two sheets, the elliptic par-
aboloid or the hyperbolic paraboloid. As an example of the problems involved, we
consider asimple case: the DOS(E) if the quadraticsurface is the sphere E = x% + y? 4 72,
A possible parametrization for the surface of the sphere £ = x? + y? + z2 is the one
corresponding to spherical polar coordinates (u = 8, v = ¢)

x = VE sin(x) cos(v)
y = VE sin(u) sin(v)
z=VEcos(v)

If the energy is such that the sphere E = x* + y* + z%lies entirely within the tetrahedron
(figure 6(a)), the limits on the « integral are 0 and s, and on the v integral 0 and 2x. The
DO3(E) becomes

dudo. (28)

a(x, ¥, z)

N WE sin (u). (29)

T 2
f du f dp W E sin(x) = 22VE, (30)
0 0

the normal VE form of the pos(E) if the dispersion relation is perfectly spherical,
However, when the sphere E = x? + y* + 22 cuts the faces, or faces and edges, of the
tetrahedron (figure 6(P)), the domain in u, v-space (using the parametrization (29))
is very complicated and analytical evaluation of the integrals (28) is difficult, if not
impossible.
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(a)

Figure 6. Examples of intersections of & sphere with a tetrahedron. In (a) the sphere lies
entirely within the tetrahedron, in (b) the sphere cuts a face of the tetrahedron.

Compared to this ‘simple’ example, there is a large variety of more complicated
situations, considering all the forms of quadratic surfaces that may occur as weil as their
positions with respect to the tetrahedron. Givea the very complicated domains in u, v-
space that will result, there is very little hope indeed of finding for cach case a u, v-
parametrization that would make analytical evaluation of the integral possible. The
complicated domainsin u, v-space alsomake highly accurate two-dimensional numerical
integration in u and v impossible. (Incidentally, figure 6 provides very direct insight in
the deficiency of the linear approximation. Suppose ¢, is the lowest energy at a corner
and £, the highest. The sphere E = x2 4 y? + 27 thus cuts for the first time through a
corner of the tetrahedron at £ = ;. The linear tetrahedron method will give a DoOs equal
to zero, i.e. a 100% error, for all energies between zero and €;. This is because any
energy below £, or above g, will in a linear approximation automatically fall outside the
tetrahedron’s range of energies (see also appendix 2).)

In order to evaluate [ E) accurately when using quadratic interpolation, we proceed
as follows. The integrats (24) are rewritten as the iterated integrals

[a [ adyneysE-—ewrn= [ 1@HE 6D
Zmin Viy(z)! 2 min

where z;, and z,,,, are the minimum and maximum z-coordinates of the corneis of the
tetrahedron. At a specific z the inner integral over x and y is just the quadratic two-
dimensional Brillouin zone integral that we solved [20]. For constant z, V, ,(z) is the
intersection of the plane z = constant with the tetrahedron and consists of either a
triangle or a quadrangle (i.e. two adjacent triangles) (figure 7(4)) and thus corresponds
to a triangular (quadrangular) two-dimensional Briliouin zone. Also, for constant z,
£4(x, y, z) is a quadratic function in x and y in the plane z = constant and E = ¢,(x, y, z)
is a quadratic curve in that plane: an ellipse, a hyperbola, a parabola, or a straight line
(figure 7(b)). The inner integral I{z, E) is thus the integral over the parts of a quadratic
curve lying within a triangle that was treated in [20]. Using the results of [20] for the
inner integral we are left with the outer z-integration.

By way of illustration, we consider again the Dos(E) if the surface E = x? + y* + z?
lies entirely within the tetrahedron. On the intervals z;, <z < ~VEand VE<zs<
Zma the planes z = constant do not cut the sphere, the contribution to the integral is
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(3
: & (a) &

'-‘.

Figure 7. (a) The intersections of planes z = constant with a tetrahedron consist of one or
two triangles. (b) The intersections of planes z = constant with quadratic surface (here a
sphere) consist of quadratic curves {here circles).

zero and we may take as limits on the z-integral —V'E and V E. The intersections of the
planes z = constant with the sphere and the tetrahedron consist of circles lying entirely
within the triangles (quadrangles). We showed [20] that for this case the integral ,(z, E)
is equal to r (and is accidentally not z-dependent), so the DOS( E) becomes

2 max VE
J dz j dxdy 8(E — g,(x,,2)) = J dzm=22VE (32)
Lmiin Vi, p2) -VE

leading, of course, to the previous result (30).

However, when the sphere cuts the faces, or the faces and the edges, of the tetra-
hedron (figure 6(5)) the integral over z is not easily evaluated analytically. We could
use some standard one-dimensional numerical integration (e.g. Gauss-Legendre) for
the z-integral

f dz J. dx dyfq.(X, y, z)&(E - Eq(xv ¥ Z))
¥min Ve (2
Ny
=Swa) [ drdyfyn 2068 - ey(e,2) &
= V(20

where z; and w(z;) are the nodes and weights of the integration formula, respectively.
Ateach z;, the two-dimensional integral I(z;, £} is solved with the method (and routines)
of {20]. Unfortunately, the numerical integration over the entire z-interval shows poor
convergence because of singularities (discontinuous derivatives) in the function I(z, E)
for z-coordinates where the quadratic surface cuts the faces or the edges of the tetra-
hedron (figure 8). The calculation of these z-coordinates is straightforward, but tedious.

For accurate numerical integration, we have to partition the z-interval into intervals
with the singularities at the endpoints

% max N_lzj'l-!

[1eBa~3 [ 1B 34)
j=1

Zmin 2';

and apply a simple transformation to each z-interval to remove the endpoint singu-
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Figure 8. The z-dependence of the ten integrals I{z, E) in case the quadratic surface is the
sphere x2 + y? + z% = 10 and the coordinates of the corners of the tetrahedron are (1, 3, 2),
(-3,2,1), (-2, -3, 0) and (2, 3, —1). Singularities occur at approximately —1.00, —0.92,
-0.68, —-0.062,0.13,0.68, 0.83, 1.33, 1.67, 1.82, and 2.00.
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Figure 9. Convergence of various methods to evaluate the integral (31) numerically. (a)
Straightforward integration over the whole z-interval, (b) division of the whole z-interval in
subintervals with the singularities at the endpoints and (¢) division of the whole z-intervalin
subintervals with the singularities at the endpoints and application of the transformation
(35) to each subinterval,

larities. The transformation
z=[1+sin(gz’)]z’;"2;z"+z,- -1=2=1 (35)

appears to work well in practice. In figure 9 a typical example is given of the convergence
of the numerical integration without division in intervals (figure 9(a)), with division in
intervals (figure 9(b)) and division in intervals and transformation (figure 9(c)). Clearly,
for high accuracy method (c) is the one to be used. Gauss-Legendre integration is used
for each interval.

As a final remark we note that the volume integral J(E) can be obtained from the
surface integral I( E) by the procedure described in appendix 2 of [20]. For this procedure
it is essential that we can calculate the minimum energy £, and the maximum energy
Emax Of £,(k), where k varies over the tetrahedron. As knowledge of these energies
increases the efficiency of the method considerably (if we know that E < ., 01 E > £,
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Figure 10. Convergence behaviour of the integrals (36} for various approximations {constant
(c), linear (1), quadratic (q)) of f(k) and e(k). + cl; x 1, Clg; O qq; (a) k) =1, {b)
flk) = cos(xx) + cos(my) + cos(mz); (¢} flk) = cos(Imx}) + cos(3my) + cos(3az); (d)
flk) = cos(6mx) + cos(bary) + cos{6xz).

the surface integral I(E) is zero) and is also of great practical utility (e.g. to narrow
down the energy-interval that has to be searched for the Fermi energy) we discuss the
calculation of £, and £, in some detail in appendix 2.

We conclude that the proposed scheme is capable of ‘exact’ evaluation of the
Brillouin zone integrals /( E) and J{E) with quadratically interpolated f(k) and (k).

4. Results and discussion

We test our method by calculating the tight binding Green’s function integrals
11y

J f J’ dx dy dz(cos(nmx) + cos(nmy) + cos{nrz))M{E + Hcos(mx)
g

+ cos(zy) + cos(mz)]} (36)

for an increasing number of &-points along the edge of the irreducible wedge (denoted
by N) for various methods listed in table 1 (figure 10). N must of course be large enough
to resolve the oscillations of the functions (k) and f(k). A reasonable minimum seems
one plus the number of extrema of these functions along an edge of the 1w.

The following abbreviations are used: (cl): constant interpolation for f(k), linear
interpolation for &(k); (l): linear interpolation for both fik) and z(k); (lq): linear
interpolation for f{k), quadratic interpolation for £(k); (qq): quadratic interpolation for
both f(k) and (k).

The integrals were evaluated for 100 evenly spaced energies in the range [~1, 1] and
the root mean square deviation from the exact (converged) result was determined. All
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Table 3. Comparison of the exponents § in (37) for the various methods used to evaluate the

integrals (36).

(a) @ (<) {d)
(el 2.2 22 2.0 1.9
() 2.2 22 2.1 1.9
(lq) 3.4 2.2 2.0 22
{qq) 3.4 3.4 3.8 4.4

methods used the same number of k-points, which was accomplished by a division of the
tetrahedra in which the (1q) and (qq) were carried out into eight smaller tetrahedra in
which the (cl) and (1) integration were performed (see figure 1). Since only very few of
the energies are close to the Van Hove singularitiesat E = —land E = ~1 /3, the present
results provide information on the behaviour of the various schemes at general energies
rather than that at (or close to) Van Hove energies.

Considering first figure 10(a) with f(k) = 1 (the density of states), the curves for (cl)
and (1l) coincide, as do those for (1q) and (qq), because the approximation for f{k) (c, 1
or q) is irrelevant for constant f(k). Figure 10{(a) clearly demonstrates the superiority of
the quadratic approximation to £(k), in agreement with the findings of Methfessel et af
[17-19]. All methods give the same RMS error in figure 10(2) when N equals 3, because
the quadratically interpolated (k) is then accidentally linear. Considering next figure
10(b), (f(k) = cos(mx) + cos(my) + cos(wz)), we note that the (qq) method is superior,
as expected. It is surprising that the (Iq) method is doing so poorly, in particular also
with respect to the linear method (11), but this is due to the fact that the (Ig) method, for
consistency with the approach of Methfessel et al [19] uses a linear (least squares)
approximation of f(k) in the large tetrahedra, which have k-points at the corners and the
midpoints of the edges, whereas the (ll) method uses a separate linear interpolation in
each of the eight smaller tetrahedra into which a large tetrahedron may be subdivided
(see figure 1). Apparently, the advantage of a finer division in the (11) method, for the
same k-point density, outweighs the advantage of the quadratic interpolation of £(k) in
the (Iq) method. (The phenomenon of different methods giving an identical log(rms) at
particular values of N, due to accidental linear behaviour of the quadratic interpolation,
occurs in each case: in figure 10(b) (1), (1q) and (qq) coincide at N = 3 because both f(k)
and e(k) are linear; in figure 10(c) (lq) and (gg) coincide at N = 7, because f(k) is linear.
In figure 10(d) this happens at N = 13.)

As has been found for the two-dimensional case, the (qq) integration shows con-
siderably better convergence characteristics than all other methods. The difference with
the other methods is particularly striking when the function f{k) varies more rapidly.
This may be analyzed more quantitatively. The almost linear dependence of log(RrmS)
on log(N) implies that the error behaves as:

RMS(N) = aN~?, (37

It is interesting to compare the exponents § for the various methods to evaluate the
integrals, since these directly reflect the convergence rate (table 3). Roughly, the
exponents § are twice as large for the quadratic integration as for the commonly used
linear integration. So, to achieve the same accuracy with quadratic integration as with
linear integration, in the limit of large N only about the square root of the number of k-
points along an edge of the fw are needed. This is not quite true for the density of states
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Figure 11. Convergence of the cohesive energy with the rumber of £H points along an edge
of the irreducible wedge (denoted by N) for a number of elements. Linear interpolation was
used for N even, quadratic interpolation was used for ¥ odd.

{column (@)) but it definitely is for rapidly varying f(k) (columns {c) and (d)). The major
improvement occurs in going to (qq). The advantage will be less favourable near band
crossings of course, but there is no reason to assume that the quadratic integration will
be worse than the linear in such cases. Table 3 also demonstrates that an 1q method [19]
is a significant improvement over ll for the density of states {column (a)), but not for any
of the integrals involving property functions (columns (b), (¢) and (d)).

The present quadratic tetrahedron method has been implemented in aself-consistent
bandstructure program [23]. Since the program does not use shape approximations to the
potentials, it is possible to calculate reliable cohesive energies (for other computational
details we refer to [23]). As a further illustration of the performance of the quadratic
method, we show in figure 11 the convergence of the cohesive energy with the number
of k-points along the edge of the irreducible wedge (denoted by N. The total aumber of
k-points used in the calculation scales like N3/6) for a number of elements. We can
choose between linear or quadratic interpolation for N odd (see figure 1), but we used
of course the quadratic method. For N even we must use the linear method.

We took the cohesive energy for N = 9 as the converged result. The error in the
cohesive energy for N =9 was less than or equal to 10™* for all elements. This was
checked for sodium, manganese and copper by calculating the cohesive energy for
N=11.

As can be seen from figure 11, the convergence of the cohesive energy is far better
with the quadratic method than with the linear method: going from an odd N (quadratic
method) to N + 1(even; linear method), the errorincreases about an order of magnitude
inspite of the larger number of k-points. Only beryllium and copper behave anomalously.
The quadratic method with N =5 gives an average error in the cohesive energy of
9.3 x 10~*. The linear method needs N = 8 (which means a threefold increase of the
number of k-points used in the calculation) to achieve the same accuracy (the average
error for N = 8is 1.5 x 107%). For beryllium and copper the quadratic method with N =
5 gives worse results than the linear method with NV = 4, but it is not the quadratic method
giving a larger error than expected (the errors for N = 5are 1.4 % 1073 for beryllium and
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2.2 % 107*for copper, compared to the average error of9.3 x 10~4for N = 5), butrather
the linear method giving an error much smalier than expected (the errors for N = 4 are
2.1 x 107* for beryllium and 7.1 x 10™* for copper, compared to the average error of
7.5 X 107%). The errors for N = 4 are even smaller than for N = 6.

The rate of convergence of the cohesive energy is also far better for the quadratic
than for the linear method: the exponent § is 2.3 for the linear method and 4.8 for the
quadraticmethod (compare table 3). So here too we find that when the quadratic method
is compared to the linear method, far fewer k-points are necessary to obtain a desired
accuracy.

5. Summary and conclusions

We have introduced a new method for the accurate evaluation of the surface integral
I(E) and the volume integral J(E) using quadratic interpolation for both the property
function f{(k) and the dispersion relation £(k). It is well known that quadratic inter-
polation is essential for energies close to a Van Hove singularity, but we have stressed
that it is imperative to evaluate the resulting integrals to high accuracy. The advantage
of the present method over other methods of integral approximation is that the integrals
can be accurately calculated in reasonable computer time. Indeed, the approachis based
on a ‘machine accuracy’ evaluation of the integrals and may therefore be regarded as
equivalent to a truly analytic evaluation of the integrals. As has been found before for
the two-dimensional case, quadratic interpolation is far better than linear interpolation,
in the sense that far fewer k-points are needed to obtain a desired accuracy for the
integrals. In particular the results presented show that (i) quadratic interpolation of £(k)
combined with ‘exact’ evaluation of the integrals is capable of handling Van Hove
singularities in the density of states (figure 4), (ii) the method considerably improves
convergence with the number of &-points also at general energies and (iii) the quadratic
methods’ inherent speed of convergence is only achieved if also the property function
flk) is quadratically interpolated (figure 10, table 3).

Appendix 1. The elliptic cylinder

For some of the quadratic forms parametrizations can be found such that the evaluation
of the integrals using quadratic interpolation can be done analytically. As an example,
explicit expressions for the integrals will be given in case the quadratic surface is an

elliptic cylinder.
The integrals to be evaluated are
[ 1ix, 3, 88 = (@1 + a55® + g®) dx dy a2 (AL
%

where u/(x,y,2) = 1,x,y, z,x%, xy, xz, y%, yz, 22 for i = 1,2,...,10. We parametrize
the surface by the transformation

€—dq
x= cos(u
\} P ()

4 = (A1.2)
y= € US| Siﬂ(u) a(xa ysz) — 1
qs 3(82 u, U) 2 VQSqS
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The faces of the tetrahedron can be given in the form
npX +nyy + npz = (j=1,2,3,4) (A1.3)

where n; is a vector normal to face j of the tetrahedron. The domain in (&, v) space will
be bounded by functions of the form

b=t Zix qlcos(u) —1
np my

From {Al.4) it is clear that the mtegrals can be evaluated as the iterated integrals
BALEY+ go(E)eos(u)+ g 3 Eysin(u)

1
du f do u(E, 1, v . ALS
[ o) e (ALS)
Vi(E) FI{EY+ fa(EYeos(u) + £ 3( E)sin(u)

Explicit expressions for the integrals are as follows (for clarity, the energy dependence
is dropped and the Jacobian is not included):

Sm(u) (Al.4)

I, = hu — hy cos(u) + h, sin(u) {Al.6a)
Iy = %hou — 3k, cos?(u) + h, sin(u) + 4k, cos(u) sin () (Al.6b)
I3 = 3hyu — h, cos(u) — 4h, cos?(u) — th; cos(u) sin(u) (Al.6¢)
= ($h} + $h2 + thu — hyhs cos(u) — dhah; cos(u)

+ ki by sin(u) + (3h3 — 3h3) cos(u) sin(u) (Al.6d)
I5 = }h,u — 4k, cos®(u) + &h, sin(u) + $hy cos(u) sin(u) ‘

+ h, cos?(u) sin(u) (Al.6¢)
I = ~4h? cos?(u) — ¥, cos?(u) + 4k, sin®(u) (A1.6f)
Iy = by hgu — Yoy cost () — $hahs cos? () + (k3 + B42) sin(u) g

+ 4h3 cos?(u) sin(u) + 4k} sin®(u) (A1.6g)
Iy = $hyu — %h; cos(u) — dh, cos(u) sin(u) — 4h; cos(u) sin?(u)

+ 4h, sin(u) (A1.6h)

= Yh hyu + (1% + 4h3) cos(u) — by by cos?(u) — 3h3 cos®(u)
~ th,khy cos(u) sin{u) — 3hi cos(u) sinz(u) + Yhyh; sin’ (1) (A1.61)
Io=403 +3h B3 +3h hDu—(h3hy + 3h3)cos(u) — h hohycos? (u) — Vidhycos® (u)
+ (h3hs + §h3)sin(u) + (b, k2 — bk, A3 cos(u)sin(u) + (b k2 — by hE)
x cos(u) sin{u) + 3 k3 cos?(u) sin(u) — ¥#3 cos(u) sin® (1)
+ $h2h} sin® (u). | (AL.6))

Appendix 2. The range of a quadratic form over a simplex

In bandstructure calculations often the range [ &m0, £ma] Of the (interpolated) dispersion
relation (k) has to be calculated, e.g. to narrow down the energy range in which the
Fermi energy has to be searched. When using quadratic interpolation for (%), £, and
Emax are also needed for accurate numerical integration of the surface integral I{ E) to
obtain the volume integral J(E) (see appendix 2 of [20]).
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The range is easily calculated when using linear interpolation for e(k): e, is the
minimum of (g, &, £3, &) and £, is the maximum of (e, &y, €3, £4), where
(£1, €1, £3, £4) are the energies in the four corners of the tetrahedron. When using
quadratic interpolation for £(k), the calculation of the minimum and maximum energy
is more involved. We construct algorithms for the one-, two- and three-dimensional
case.

A2.1. The one-dimensional case

For the one-dimensional case, the simplex is an interval [x,, x;] and the quadratic form
is a parabola

e(x) = gy + gax + g3x*. (A2.1)
The parabola has two side extrema at the endpoints of the interval:

£(x,) = g1 + goX; + q3x1 (A2.2q)

&(x2) = g1 + g2%2 + qai3 (A2.2b)
and has an extremum at the point x, where

de/dx = g5 + 2g3x; =0 (A2.3)
with energy .

£(x3) = q; — ¢3/4q;. ‘ (A2.4)

‘We only have to consider extrema for which x; < x; < x,. The range of the parabola is

[min{e(x, ), &(x;). &(x3)), max{e(x,), £(x2), £(x3))}.

A2.2 The two-dimensional case

For the two-dimensional case, the simplex is a triangle with corners (s;, §;, s;) and the
quadratic surface is an ellipse, a hyperbola, a parabola or a straight line. We first note
that the range of the quadratic form

£(x,¥) = g1 + gox + g3y + q4x% + gsxy + qoy? (A2.5)

is not changed by an affine transformation of both the triangle and the quadratic form.
Asthe range is more easily calculated if the triangle is the triangle with the corners {0, 0),
(0, 1y and (1, 0), we apply the affine transformation

k=s; +u(s; —s;)+ v(s; —5)) (A2.6)

where 0 <u =<1,0 =< p <1 — u. The quadratic form in (x, y) becomes a quadratic form
in the variables (i, v)

e(u,v) = gy + gat + g0 + qu® + gsuv + ggv*. (A2.7)

Now for each u, (A2.7) represents a parabola in the variable v. These parabolas have
the ‘side extrema’

v=0: e(u) = gy + qau + quu’ (A2.8a)

p=1-u sy =q; +qs + g5+ (g2 — g3 + g5 — 2q¢)u + (g4 — g5 + ge)u’.
(A2.8)
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So the ‘side extrema’ are parabolas in the variable u, and the range of the parabolas
(A2.8a), which we will denote by [€in1, Epan], and (A2.8b), which we will denote by
[€min2> Emaxa]» can be calculated using the algorithm for the one-dimensional case. The
parabolas (A2.7) have ‘extrema’ at the points (i, v (%)) where

(2e(u, 0)/av) o=y, = g3 + gstt + 2q Ve = O Vouu) = (~q3 — qsu)/2q5
(A2.9)
with energy
e{u) = q1 ~ q3/4q¢ + u(q2 — 4395/29¢) + ¥ (qs ~ q3/4q¢).  (A2.10)

So the ‘extrema’ are also parabolasin the parameter u. We only have toconsider extrema
for which

O<sv,,<1-u O0=su=<1t. (A2.11)
This linear inequality can be easily solved for u and the range of the parabolas (A2.10)

[Emin3s Emaxs] Can be calculated using the algorithm for the one-dimensional case. Finally,
the range of the quadratic form over the triangle becomes

{min(sminl » Emin2» E:'ninS)! max(emaxl » €max2r Emax3 )]

AZ2.3, The three-dimensional case

For the three-dimensional case, the simplex is a tetrahedron with corners (sy, $, §3, 54)
and the quadratic form is one of the forms given in table 2. As for the two-dimensional
case, we reduce the tetrahedron to the standard tetrahedron with the corners (0, 0, 0,
(1,0,0),(0,1,0) and (0, 0, 1) by the affine transformation

k=s) + u(s, —8)) + 0(sy ~ 51) + w(sq — 51) (A2.12)

where 0<u<1,0sp<1-u, 0=sw=1-u—v The quadratic form in (x,y,z)
becomes a quadratic form in the variables («, v, w)

s(u, v,w)y=gq, + gu+ g0 + quw+ qsuz + geuv + gruw + qsu2
+ govw + g ow?. (A2.13)

For each w and v, (A2.13) represents a parabola in the parameter w. These parabolas
have ‘side extrema’

w=0: e(u, v) = g + g + g3v + qsu® + qouv + ggv? (A2.14a)
w=1l-u-u e(u,0)=qr + qe + o+ u(g2 — 94 + 97 — 29n0)

+ 0(g3 = g4 + g9 ~2q10) + 4*(g5s ~ g7 + qu0)

+uvlge — g7 — 9o + 210} + 0*(gs — g5 + q10) (A2.14b)

As can be seen from (A2.14), the ‘side extrema’ are two-dimensional quadratic forms
in the parameters u and v, where u and v vary over the standard triangle. So the range
of the ‘side extrema’ (A2.14a) [Emin1» Eman] A (A2.14D) [Ein2s Emaxz] €20 be calculated
using the algorithm for the two-dimensional case.

The parabolas (A2.13) have ‘extrema’ at points (i, U, Wex(i, v)) for which

(38(”, D, w)/aw)lu':wm =gqqt g+ gev + 291 gWex = 0
Wext = (—q4 — @24 — gs0) /2410 (A2.15)
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Figare Al. The solution of the inequality (A2.17)
consists of the projections in (u, v) space (the
lighter shaded quadrangle) of the intersection of
the plane (A2.15) (the darker shaded quadrangle)

" with the standard tetrahedron.
with energy \ ,
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e 2410 qs 490 ( )
‘We only have to consider extrema for which
Oswyusl-u-vo (A2.17)

The solution of this inequality consists of a triangle or a2 quadrangle {(two triangles) in
the (u, v)-plane. This may be seen as follows: equation {A2.15) shows that the points
{u, v, weu(u, v)) constitute a plane. Since only extrema inside the standard tetrahedron
have to be considered, the relevant (i, v) points in the (i, v)-plane are found by the
projection of the part of the (u, v, wo(u, v))-plane that is interior to the standard
tetrahedron on the (i, p)-plane (figure A1).

As for the ‘side extrema’, the ‘extrema’ are two-dimensional quadratic forms in the
parameters # and v, where u and v vary over the triangle or quadrangle, and the range
of the quadratic form (A2.14) [eqin3, Emaxs] c21 be calculated using the algorithm for the
two-dimensional case. Finally, the range of energy of the quadratic form over the
tetrahedron becomes [min{£.n1» Eminzs Emind)> MAX(Eqpaxt> Emaxds Emaa)]-
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