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Abstran A new method is described to evaluate integrals of quadratically interpolated 
functions over the three-dimensional Brillouinzone. The method is based on the methodof 
the authors for analytic quadratic integration over the two-dimensional Brillouin zone. It 
uses quadratic interpolation not only for the dispersion relation z(k), but for property 
functionsflk) as well. The method allows a 'machine acsuracy'evaluation of the integrals 
and may therefore be regarded as equivalent to a truly analytic evaluation of the integrals. 
It is compared to other methods of integral approximation by calculating tight-binding 
Brillouin Lone integrals using the same number of k-points for all methods. Also shown are 
cohesive energy calculations for a number of elements. When the quadratic method is 
compared to thecommonlyusedlinearmethod,it is found thatfarfewerk-pointsareneeded 
to obtain a desired accuracy. 

1. Introduction 

Calculation of properties of solids with m-dimensional translation symmetry (in = 
1,2,3) requires the evaluation of integrals such as [l] 

or its derivative 

where E is the energy for which the property has to be calculated, the summation is over 
the energy bands, Vis the volume of the first Brillouin zone,f.(k) is a property function 
for the nth band, 0 and S are the step and delta function respectively, and E.@) is the 
dispersion relation for the nth band. If, for example,f.(k) 1, I ( E )  is the density of 
statesforenergyE:~os(E). Ascan beseenfrom(1) and (2),J(E)isanintegraloverthe 
volume lying 'below' the surface E = E&), whereas Z(E) is an integral over the surface 
E = E.@). Energies for which IVc,(k) I = 0 on the surface E = E&) are known as Van 
Hove singularities. Generally, I(E) or dI(E)/dE is infinite at Van Hove energies [Z, 31. 
Usually the analytical form of the functionsf&) or E.&) is not known, so the integrals 
J (E)  and [ (E)  have to be evaluated by numerical integration. As bandstructure cal- 
culations are time consuming and the time needed for such calculations usually increases 

0953-8984/91/356721 + 22 $03.50 0 1991 IOP Publishing Ltd 6721 



~ 

6122 G Wiesenekker and E J Baerends 

Figurel. (a)Linearinterpolationuses thevaluesofthefunctionsf(k) and€(k)in thek-points 
at the coiners of the primary tetrahedron. Quadratic inlerpolation uses the values of the 
functionsflk) and &(k) in the k-pointsat lhe corners and the edges of the tetrahedron. (b)  In 
comparisons (see section 4) the same number of k-points should be used, so the primary 
tetrahedron used in the quadratic interpolation is divided into eight smaller tetrahedra with 
k-points at the corners in which linear interpolation can be used. 

linearly with the number of k-points used, the question rises how the integrals [ (E) and 
J(E) can be accurately evaluated using as few k-points as possible. 

The method commonly used for the numerical evaluation of the integrals is the 
following: the first Brillouin zone can always be partitioned into a number of so-called 
basicor primary simplices (triangles in two dimensions, tetrahedrain three dimensions). 
The evaluation of the integralsl(E) andJ(E) inone simplexisconsidered. If the k-points 
for which the band struaure calculation is performed are at the comers of the simplex, 
it is possible to obtain a linear approximation to the dispersion relation E @ )  and the 
function f(k) using the known values at the comers. With these linear functions it is 
possible to evaluate I (E)  and J ( E )  analytically [4-lo]. The linear approximation on 
which this so-called linear tetrahedron method (LTM) is based, may be expected to be 
more accurate when the sizeof thesimplicesdecreases, i.e. themeshofk-points becomes 
finer. However, if E is at or close to a Van Hove singularity, it is well known that the 
linear approximation breaks down and a quadratic approximation is essential [ll, 121. 
A quadratic approximation is obtained in the basic simplex if also the values off(k) and 
~ ( k )  are available at k-pointson themidpointsof the edges (see figure 1). Unfortunately, 
it is not a simple matter to evaluate the integrals analytically iff@) and ~ ( k )  in (1) and 
(2) are substituted with quadratic polynomials. An overview of the methods found in 
the literature is given in table 1, from which it appears that a fully quadratic method with 
exact evaluation (i.e. to machine accuracy, either analytically or numerically) of the 
integrals is not yet available for three-dimensional systems. We will argue below that 
such a scheme is indeed highly desirable and will present an exact fully quadratic method 
for three-dimensional systems in this paper. 

For three-dimensional systems the two most important quadratic approaches to date 
are the hydrid tetrahedron method (HTM) of MacDonald et af [16] and the projective- 
geometrymethod (PGM)ofMethfesseletal[17-19]. In the PGMtheintegrakareevaluated 
exactly, using geometric methods, but only for a linear interpolation off@). We have 
shown in the two-dimensional case [ZO], that significant improvement is obtained for 
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Table 1. An overview ofthe methods found in the literature for the evaluation ofthe integrals 
I ( E )  and J(E) .  Shown is the order of interpolation of the functions t(k) andflk), the type of 
integral evaluation of I ( E )  and J(E) and the dimension m for which the method has been 
implemented. The entries analytic and numerical stand for potentially exact evaluations in 
the sense that machine accuracy can be obtained by judicious avoidance of build up and 
round-off errors (analytic) or use of sufficient points in a standard (e.g. GaussLegendre) 
one-dimensional numerical integration (numerical). The qualification ‘approximate’ for the 
hybrid tetrahedron method is discussed in the text. 

constant linear analytic analytic 1,2,3 [141 
linear linear analytic analytic LTM 1,2,3 [&IO] 
linear quadratic analytic numerical EM 1,2,3 117-191 
quadratic quadratic approximate approximate m 1,2,3 [15,16] 
quadratic quadratic analytic numerical AOM 1,2 [W 

quadratic interpolation off(k) (the analytic quadratic method (AQM)). Understandably, 
this improvement is particularly striking when@) exhibits considerable variation over 
the Brillouin zone. In this paper we will show that the same holds true for the three- 
dimensional case (see figure 10 and compare to figure 7 of [ZO]). 

The HTM is very attractive for its simplicity. Within a given primary tetrahedron the 
quadratic approximations f,(k) and E#) to f (k )  and ~ ( k )  are obtained. The integrals 
I(E) and J(E)  over the primary tetrahedron are then evaluated by subdividing the 
primary tetrahedron into smaller ones and using the LTM in these secondary tetrahedra. 
At the corners of the secondary tetrahedra the values off#) and &&k) are used, so no 
additional bandstructure calculations are needed. The HTM is in fact an approximate 
numerical evaluation of the integrals I(E) andJ(E), withf,(k) and E&) substituted for 
f(k) and E@), over the primary tetrahedron. MacDonald e? a1 used a subdivision of the 
primary tetrahedron into 64 secondary ones, but this number may of course be increased 
to achieve convergence of the ‘inner’ numerical integration. We would like to point out, 
however, that the HTM, although a distinct improvement on the LTM, runs into the same 
kind of problem at Van Hove energies as the LTM itself. The linear approximation in the 
secondary tetrahedrons partly cancels the effect of the quadratic approximation in the 
primary tetrahedron. This may be seen as follows. The essential shortcoming of the 
linear approximation is its inability to describe a possible extremum of &(k) somewhere 
in a tetrahedron. A quadratic approximation E&) to ~ ( k )  may however exhibit extrema, 
and use of E#) in an exact evaluation of e.g. the integral I ( E )  (2) w,iU then account for 
the important effect of the occurring zeros IV&,,(k)l = 0 of the denominator. If however 
the integral isevaluated by using the LTM in small secondary tetrahedrons, the extremum 
of E#) will be missed again. The advantage of the HTM is of course that the number of 
secondary tetrahedrons can be made large with little extra cost, but since nothing has 
been done about the essential deficiency of the linear method one still expects the 
convergence of the ‘inner’ numerical integration to obtain I(E) and J(E) to be poor. To 
illustrate these remarks a few examples may be in order. 

In figure 2 we give an example of the convergence of the density of states DOS(E) in 
the HTM with the number of secondary tetrahedra in the ‘normal‘ situation, that is, not 
close to a Van Hove singularity. The primary tetrahedron here has corners (O,O, 0), 
(1, 0, 0), (0, l , O ) ,  and (0, 0 , l )  and the dispersion relation is taken perfectly spherical, 
~ ( k )  = x2 + y z  + zz (x stands for k,, etc), and E = 0.5, so we are integrating over the 
surfacex’ + y z  + zz = 0.5,whichhasconsiderable butby nomeansunrealisticcurvature 
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Figure 2. (a )  Percentage error in the density ofstates as a function of the number of secondary 
tetrahedrainthemifthequadraticsurface isthesphere2 t y z  t z2  = OSandtheprimary 
tetrahedronis(O.0.0).(1,0.0).(0.1.0).(0,0,1). (b)Convergenceofthedcnsityofstates 
in the‘standard’ m methodwilh thenumber ofprimary tetrahedraif thequadratic surface 
is x 2 +  y z  t z2 = O S  and the IBZ is the tetrahedron (O,O, 0). (LO, O), (0, 1,0), (0 .0, l ) .  A 
primary tetrahedron is now always divided into 64 smaller tetrahedra. 

over the primary tetrahedron. The energy is far from the Van Hove singularity at 
E = 0. This example of course also demonstrates the performance of just the LTM. 

As can be seen from figure 2(a) a reasonable (-0.1%) accuracy may be obtained but 
convergence is fairly slow and at least a division of the primary tetrahedron in 1024 
smaller tetrahedra is required to obtain an accuracy of (only) 1%. It is possible to 
improve the accuracy at a given number of subdivisions (but not the convergence rate), 
obtaining an average accuracy of e.g. -1% at 64 smaller tetrahedrons as in the work of 
MacDonald et a/ [16] and Reser [13], by choosing smaller primary tetrahedrons so that 
the constant-energy surface is effectively Batter. This is illustrated by the example in 
figure 2(b) of the performance of the ‘standard’ HTM where a constant subdivision 
into 64 tetrahedra for the ‘inner’ integration is used and only the number of primary 
tetrahedrons is varied. (Here the tetrahedron with comers (O,O,O), (1,0,0), (0,1,0), 
and (0, 0 , l )  may be looked upon as the IBZ that is being subdivided into primary 
tetrahedrons). We note that a genuine quadratic method, such as Methfessel et a! [17- 
191 and the one we propose in this paper, would have zero error in this example of a 
perfectly quadratic dispersion relation. 

However, the hybrid method can fail particularly badly in the neighbourhood of Van 
Hove singularities. The quadratic surface E = x2  + y2 + z2 has a Van Hove singularity 
for E = 0. i n  figure 3(a) the convergence of the HTM with the number of secondary 
tetrahedra is given for an energy very near this Van Hove singularity (E = 0.OOS). The 
convergence is very slow indeed, the error being practically 100% up to quite large 
numbers of secondary tetrahedra. The reason is that the part of the surface 
x 2  + y z  + zz = 0.005 lying within the primary tetrahedron is very small, and many 
divisions into smaller tetrahedra are needed before the spherical surface is represented 
with any accuracy by flat triangles in a number of small tetrahedra. The standard HTM 
(figure3(b)) doesnot domuch better. Agenuinequadraticmethodstillgiveszeroerror. 

As another example figure 4 gives the convergence of the standard HTM and our 
quadratic method with the number of primary tetrahedra if the dispersion relation is not 
perfectly quadratic, but of the simple-cubic tight-binding type: &(x,y ,  z) = 
-(cos(m) + cos(zy) + cos(m))/3. There are Van Hove singularities for E = -1 and 
E = -1/3 1211. In the neighbourhood of E = -1 the dispersion relation approaches a 
quadratic form, and our quadratic method yields zero error. The Van Hove singularity 
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Figure 3. (a) Convergence of the density of states with the number of secondary tetrahedra 
if the quadratic surface is the sphere x z  + y'+ z2 = 0.W5 and the primary tetrahedron is 
(O,O,O), ( l , O , O ) ,  (0, l , O ) ,  (0.0.1). (b)Convergenceofdensityofstatesin the'standard' 
HTM with the number of primary tetrahedra if the quadratic surface is xz + y2 + z2 = 0.005 
and the mz is (O,O, 0). (1.0.0). (0, l , O ) ,  (O,O, 1). A primary tetrahedron is then always 
divided into 64 smaller tetrahedra. 
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Fgure4. Convergenceofthe densityofstateswith thenumberofprimarytetrahedrafor the 
'standard' HTM and the AOM if the surface is -(ms(nx) + cos(zy) + cos(nz))/3 = - 1/3 and 
the IBZ is the tetrahedron (0.0, O), (1,O. 0). (1,1,0), (1,l.l). 

at E = -1/3 is not of quadratic type, but figure 4 shows that our method still gives good 
convergence compared to the HTM. 

It is to be realized that the correct handling of the Van Hove singularities of the 
E#) in the primary tetrahedrons is not a matter of only academic interest since such 
singularities occur frequently. We found for example in a moderately accurate band- 
structure calculation on silicon (24 primary tetrahedra in the IBZ) 47 quadratic Van Hove 
singularities (i.e. 1V.zq(k)l = 0) in the four occupied valence bands. 

It is clearly desirable to have a method to evaluate the surface integral [ (E)  in 
three-dimensional systems exactly (i.e. to machine accuracy) while using quadratic 
interpolation for bothflk) and ~(k). The volume integral J ( E )  can then also be done 
exactly according to the procedure described in appendix 2 of [ZO]. Such a method is 
presented in this paper. The method is based on a transformation of variables which 
allows one to deal straightforwardly with the &function in Z(E). In section 2 we dem- 
onstrate this method by applying it to the simple, commonly used linear interpolation. 
Numerically this yields of course the same results as the likewise exact LTM. In section 3 
the problems arising in the application of the method to quadratic interpolation are 
discussed. It turns out that a transformation to new variables such that all integrals can 
be done analytically is not always possible. The solution is to resort to a numerical 
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integrationin onevariable, whichcan be caniedout to arbitraryaccuracyusingstandard 
one-dimensional numerical integration techniques. The remaining two-dimensional 
integral can then be done analytically by the transformation-of-variables method as 
already demonstrated in [ZO]. In section 4 we compare our method to other methods of 
BZ integral evaluatioo. In the appendices some closely related subjects are treated. 

G Wiesenekker and E J Baerends 

2. Linear interpolation 

When using linear interpolation forf(k) and E&), we have 

f,(X,Y,z)=Pt +P2X+PSY + P G  y, 2) = 41 f q2x + 43Y + 942. (3) 
The constants pi and qi can be found by solving a system of four linear equations in four 
unknowns. The integral (2) becomes 

d 

IAk)G(E- c (k) )&=~f i (x ,y ,z )6(E-  Ei(x,y,z))drdydz= i = l  Epi l i (E)  

I , (E)  = 1 ~ i b . y ~  z)G(E - W,Y, 2)) h d y d z  

(4) 
V V 

where 

(5) 
V 

andjii(x, y, I) = 1, x ,  y, zfori  = 1,2,3, 4.NotethatZl(E)isthedensityofstatesDOs(E). 
So if we can evaluate the integrals Ii(E), we can integrate any linear functionf,(x, y, z )  
over the linear surface E = Ei(x, y, z). To evaluate the integral 

we make a change of variables from ( x .  y. z) to (e, U, U) 

x = Re, U, U) y = g k  U, 0 )  

Ei(x,y, z )  = E,(f(e, U, U) ,g (e ,  U, U ) ,  M e ,  U, 0)) = e .  

z = h(e, U, U) (7) 

(8) 

such that 

The transformation can be seen as a parametrization of all surfaces e = q ( x ,  y, z) in the 
parameters U and U. This transformation removes the &function, changing the integral 
from an integral in three variables ( x ,  y, z )  to an integral in two variables (U, U). 

1 P ( ~ , Y ,  z)6(E - E k y .  2)) dr dY dz 
V W . .  

V " d d  

where V,.,(E) is the domain in (U, U) space corresponding to the part of the surface 
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Figure 5. m e  vectors used for the parametrization of the linear surface e = E&, y, z )  (the 
grey-shaded plane) if (a) E ,  < E < E~ < E ~  < E, (b) E ,  < e2 < E < ej < e ,  and (c) el c 
e ,  < E1 < E <  E,. 

E = E&, y, z )  lying within the tetrahedron. We try to find parametrizations such that 
the integral (9) can be done analytically. 

When using linear interpolation, the surfaces e = E,(x,Y, z )  are planes and par- 
ameterizations are easily given. We assume that the corners of the tetrahedron are 
numbered such that < E~ < 

< E < E~ < < E+ The interSection of the linear surface with the tetrahedron 
consists of one triangle (figure 5(u)). 

< E+ Three cases have to be considered. 

(i) 

A parametrization for the surface e = E,(& y .  z )  is 

which is six times the volume of the tetrahedron. 
(ii)El< E ~ <  E < .s3 <~,.Theintersectionofthelinearsurfacewiththetetrahedron 

consists of a quadrangle (two triangles) (figure 5(b)). For one triangle aparametrization 
is 
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The Jacobian is 

G Wiesenekker and E J Baerends 

And for the other triangle: 
e - e - E,  

k =  kl +-(k4 - k l )  + U(& - k 1 )  + - 
E4 - E1 E 4  - E2 

(iii) E ,  < < E )  < E < E+ This resembles case (i). The intersection of the linear 
surface with the tetrahedron consists of one triangle (figure 5(c))  with parametrization 

The Jacobian is 

In all cases, the transformations have the form 

The integrals become 
I I-U 

Z I =  8 ( E - & , ( x , y , z ) ) d r d y d r = D I d u  I d u = T  D 

0 0  
I V 
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Table 2. The various forms to which a quadratic surface can be reduced and the types of 
surfaces they represent. All constants qt (i = 2, . . ., 9) are non-zero. 

Surface Type 

ellipsoid (qI ,  q8, q j 0  the same sign) 
hyperboloid of one or hvo sheets (4,. qe. qto not the same sign) 
elliptic paraboloid (qr and q8 the same sign) 
hyperbolic paraboloid (qr and qn not the same sign) 
elliptic cylinder (4% and q8 the same sign) 
hyperbolic cylinder (qr and qn not the same sign) 
parabolic cylinder 
plane 
degenerate (two parallel planes) 
degenerate 

1 4  = 26(E - E&, y, 2)) dx dy dz = D du do ( tz  + UU, + U U , )  I I  
0 0  

I V 

We conclude that the transformation of integration variablcs leads by direct algebraic 
manipulation to the equations of the linear tetrahedron method. 

3. Quadratic interpolation 

When using quadratic interpolation for the functionsflk) and &(k), we have 

fq(x?Y,z)=Pl +p2xfp3yfP4Z+P5X2 +P6xY+plxz fpSy2 +P9yz+p10~z 
(21) 

(22) 

‘q(x,Y, 2) = q1 + q2x + 43Y + q4z + 45x2 + q6xY + q7xz + qSY’ + q9Yz f q10z2. 

Theconstantspiandqican befoundbysolvingasystemoftenequationsin tenunknowns 
(see figure 1). The integral (2) becomes 

10 

where 

andFi(x,y,z) = l,x,y,z,x’,xy,xz,y’,yz, r’fori = 1,2,. . ., 10. Soifwecanevalu- 
ate the integrals Zi(E), we can integrate any quadratic function f&y, z)  over the 
quadratic surface E = E&, y, z). If we apply an affine transformation 

to the integrals (23), the functionsf,(k) and &&) remain quadratic functions and the 
volume of integration remains a tetrahedron. It is well known [22] that there always 
exists an affine transformation such that E@) takes one of the forms given in table 2. 

k =  Ak’ + b (25) 
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If the coefficients q5, q8 and ql0 are non-zero (which is generally the case) and have 
the same sign the surface is an ellipsoid. For all other combinations of signs the surface 
is a hyperboloid of one or two sheets. According to our experience practically only the 
ellipsoid (about 25% of all cases) and the hyperboloid of one or two sheets (about 75% 
of all cases) occur. 

Let us first try to follow the same procedure as for the linear approximation in the 
previous section and for the two-dimensional quadratic case in [20]. We make a change 
of variables from (x, y, z) to (e, U, U) 

x = f(e, U, U) Y = d e ,  U, U) 

&&yr 2) = eq(f(e, U, U),&, U, U), Ye, U, 4) = e. 

z = h(e, U, U) (26) 

(27) 

such that 

This transformation can be seen as a parametrization of all surfaces e = E&X, y, z) in the 
parameters U and U. This transformation removes the &function 

f eci(x7y,z)6(E- ~ ~ ( x , y , ~ ) ) & d y d z  
vx.y.2 

Fortheellipticcylinder (seeappendix l), thehyperboliccylinder, the paraboliccylinder, 
the plane and the two degenerate casesparametrizations can be found such that integral 
(28) can be done analytically. However, we have not been able to find such par- 
ametrizations for the ellipsoid, the hyperboloid of one or two sheets, the elliptic par- 
aboloid or the hyperbolic paraboloid. As an example of the problems involved, we 
considerasimplecase: theoos(E)ifthequadraticsurfaceisthesphere E = x2  + y2 + zz. 
A possible parametrization for the surface of the sphere E = x2 t y2 + z2 is the one 
corresponding to spherical polar coordinates (U = 8, U = @) 

~~~ ~~ ~ ~ ~~ ~ ~~ 

x = VEsin(u) cos(u) 

y = VEsin(u) sin(uj a(x,y, z, = * a s i n  (U), (29) 
~~~~ ~ ~ a(e, U, U )  i 2 = vZcoS(u)  

Iftheenergyissuch that thesphereE=x2 + y2 +z21iesentirelywithinthetetrahedron 
(figure 6(a)), the limits on the U integral are 0 and rz, and on the U integral 0 and 2n. The 
DOS(!?) becomes 

1 du 7 du *a sin(u) = ~RG, (30) 
0 0  

the normal V% form of the ~ o s ( E )  if the dispersion relation is perfectly spherical. 
However, when the sphere E = xz + y2 t z2 cuts the faces, or faces and edges, of the 
tetrahedron (figure 6(b)), the domain in U, u-space (using the parametrization (29)) 
is very complicated and analytical evaluation of the integrals (28) is difficult, if not 
impossible. 
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Figure 6. Examples of intersections of a sphere with a tetrahedron. In (Q) the sphere lies 
entirely within (he tetrahedron, in (b)  the sphere cuts a faccof the tetrahedron. 

Compared to this 'simple' example, there is a large variety of more complicated 
situations, considering all the forms of quadratic surfaces that may occur as well as their 
positions with respect to the tetrahedron. Given the very complicated domains in U, u- 
space that will result, there is very little hope indeed of finding for each case a U, u- 
parametrization that Nvould make analytical evaluation of the integral possible. The 
complicateddomains in U, u-spacealsomakehighlyaccurate two-dimensional numerical 
integration in U and u impossible. (Incidentally, figure 6 provides very direct insight in 
the deficiency of the linear approximation. Suppose E ,  is the lowest energy at a corner 
and s4 the highest. The sphere E = xz + yz  + zz thus cuts for the first time through a 
corner of the tetrahedronat E = E ~ .  The linear tetrahedron methodwillgive M DOS equal 
to zero, i.e. a 100% error, for all energies between zero and c1. This is because any 
energy below c1 or above E~ will in a linear approximation automatically fall outside the 
tetrahedron's range of energies (see also appendix 2).) 

In order to evaluate I i (E)  accurately when using quadratic interpolation, we proceed 
as follows. The integrals (24) are rewritten as the iterated integrals 

I n a x  ~, I dz I dY pi(& Y ,  z)a(E - E&, Y ,  2)) 1 E) dz (31) 
zmh Vx,y(z) zmin 

where zmio and z ,  are the minimum and maximum z-coordinates of the comers of the 
tetrahedron. At a specific z the inner integral over x and y is just the quadratic two- 
dimensional Brillouin zone integral that we solved [20]. For constant z, V J z )  is the 
intersection of the plane z = constant with the tetrahedron and consists of either a 
triangle or a quadrangle (i.e. two adjacent triangles) (figure 7(a)) and thus corresponds 
to a triangular (quadrangular) two-dimensional Brillouin zone. Also, for constant z ,  
E&, y, z)  is a quadratic function in x and y in the plane z = constant and E = E&, y, z)  
is a quadratic curve in that plane: an ellipse, a hyperbola, a parabola, or a straight line 
(figure 7(6)). The inner integral I;(z, E )  is thus the integral over the parts of a quadratic 
curve lying within a triangle that was treated in [20]. Using the results of [20] for the 
inner integral we are left with the outer z-integration. 

+ zz 
lies entirely within the tetrahedron. On the intervals zmin s z < -V% and d< z s 
z,, the planes z = constant do not cut the sphere, the contribution to the integral is 

By way of illustration, we consider again the oOs(E) if the surface E = xz + 
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2 

FLgum 7. ( U )  The intcrsectionr of planes z = wnstant with a tetrahedron consst of one or 
two mangles. (b)  The intersections of planes z = constant with quadratic surface (herc a 
sphere) consist of quadratic CUNCS (here circles). 

zero and we may take as limits on the z-integral -V%and a. The intersectionsof the 
planes z = constant with the sphere and the tetrahedron consist of circles lying entirely 
within the triangIes(quadrang1es). Weshowed [ZO] that forthiscase the integral Zl(z, E) 
is equal to z (and is accidentally not z-dependent), so the DOS(E) becomes 

2, a I dz I drdy6(E-&,(x,y,z))= I d z n = 2 z f i  (32) 
ld" vx,yw -a 

leading, of course, to the previous result (30). 
However, when the sphere cuts the faces, or the faces and the edges, of the tetra- 

hedron (figure 6(6))  the integral over z is not easily evaluated analytically. We could 
use some standard one-dimensional numerical integration (e.g. Gauss-Legendre) for 
the z-integral 

I dz I ~ d y f q ( ~ , y r z ) 6 ( E - & q ( ~ , ~ , Z ) )  
'dn V",A*) 

h* 

where zi and w(zJ are the nodes and weights of the integration formula, respectively. 
At each z,, the two-dimensional integral Z(ze E) is solved with the method (and routines) 
of [20]. Unfortunately, the numerical integration over the entire z-interval shows poor 
convergence because of singularities (discontinuous derivatives) in the function Z(z, E) 
for z-coordinates where the quadratic surface cuts the faces or the edges of the tetra- 
hedron (figure 8). Thecalculationof these z-coordinatesisstraightforward, but tedious. 

For accurate numerical integration, we have to partition the z-interval into intervals 
with the singularities at the endpoints 

'mu N - l Z l ' l  1 W ,  E )  dr - L(z, E) dz (34) 
1- I 

zmn 'i 

and apply a simple transformation to each z-interval to remove the endpoint singu- 
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Figure 8. The z-dependence of the ten integrals [,{I, E )  in case the quadratic surface is the 
spherex2+ya+ z z =  10andfhecoordinatesofthecomersof thetetrahedronare(1,3,2), 
(-3,2,1), (-2, -3,O) and (2,3, -1). Singularities occur at approximately -l.M), -0.92, 
-0.68, -0.062,0.13,0.68,0.83,1.33, 1.67,1.82, and2.M). 

. . . . . . .  
0.8 1.0 1.2 1.4 1.6 1.8 2.0 
log(number of integration points) 

Figure 9. Convergence of various methods io evaluate the integral (31) numerically. (U) 
Straightforward integration over the whole z-interval, (b) division of the whole z-interval in 
subintervals with the singularitiesat the endpoints and (c) division of the whole z-intervalin 
subintervals with the singularities at the endpoints and application of the transformation 
(35) to each subinterval. 

larities. The transformation 

I =  [ 1 +sin . (; -2' ) ] ~ i + 1 - ' i + ~ ~  2 -1 5 2 ' 5  1 (35) 

appears to work well in practice. In figure 9 a typical example is given of the convergence 
of the numerical integration without division in intervals (figure 9(a)), with division in 
intervals (figure 9(b)) and division in intervals and transformation (figure 9(c)). Clearly, 
for high accuracy method (c) is the one to be used. Gauss-Legendre integration is used 
for each interval. 

As a final remark we note that the volume integral J(E)  can be obtained from the 
surfaceintegrall(E) bythe procedure described inappendixzof [ZO]. For this procedure 
it is essential that we can calculate the minimum energy and the maximum energy 
E,,,, of Eq(k), where k vanes over the tetrahedron. As knowledge of these energies 
increases the efficiencyof the method considerably (if we know that E < E > E,, 
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Figure 10.Convergence behaviouroftheintegrals(36)for vanousapproximalions(mnstan1 
(c), linear (I). quadratic (9)) of I(k) and ~ ( k ) .  + cl; X II; 0 Iq; 0 qq; (U) I ( k )  = 1: (b) 
flk) = ws(nx) + w s ( n y )  + cos(nz); (c )  I(k)  = ws(3n.r) t cos(3ny) + ms(3n.7); (a) 
I ( k )  = ms(6n.r) + cos(6xy) + cos(6nz). 

the surface integral I (E)  is zero) and is also of great practical utility (e.g. to narrow 
down the energy-interval that has to be searched for the Fermi energy) we discuss the 
calculation of 

We conclude that the proposed scheme is capable of ‘exact’ evaluation of the 
Brillouin zone integrals I (E)  and J ( E )  with quadratically interpolatedf(k) and E @ ) .  

and E,, in some detail in appendix 2. 

4. Results and discussion 

We test our method by calculating the tight binding Green’s function integrals 

i i i dx dy dz(cos(nm) + cos(nzy) + cos(nnz))6{E t f[cos(zx) 
- I  -1  -1 

+ cos(ny) + cos(nz)]} (36) 
for an increasing number of k-points along the edge of the irreducible wedge (denoted 
by N) for various methods listed in table 1 (figure 10). Nmust of course be large enough 
to resolve the oscillations of the functions ~ ( k )  andflk). A reasonable minimum seems 
one plus the number of extrema of these functions along an edge of the IW. 

The following abbreviations are used (cl): constant interpolation for Rk), linear 
interpolation for E&); (U): linear interpolation for both f lk)  and E @ ) ;  (Iq): linear 
interpolation forf(k), quadratic interpolation for E @ ) ;  (qq): quadraticinterpolation for 
bothxk) and E@). 

The integrals were evaluated for 100 evenly spaced energies in the range [- 1 ,1 ]  and 
the root mean square deviation from the exact (converged) result was determined. ALI 
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T ~ b l ~ 3 . ~ m p ~ s o n o f t h e e ~ ~ o ~ e " t $ ~ i n ( 3 7 ) i o r  thevariousmethodsusedtoevaluatethe 
integrals (36). 

2.2 2.2 2.0 1.9 
(11) 2.2 2.2 2.1 1.9 
(d) 

(la) 3.4 2.2 2.0 2.2 (4) 3.4 3.4 3.8 4.4 

methods used the same number of k-points, which was accomplished by a division of the 
tetrahedra in which the (lq) and (99) were carried out into eight smaller tetrahedra in 
which the (cl) and (U) integration were performed (see figure 1). Since only very few of 
theenergiesareclosetotheVanHovesingularitiesatE = -1 andE = -1/3,thepresent 
results provide information on the behaviour of the various schemes at general energies 
rather than that at (or close to) Van Hove energies. 

Considering first figure lO(a) withf(k) = 1 (the density of states), the curves for (cl) 
and (11) coincide, as do those for (Iq) and (qq), because the approximation forflk) (c, 1 
or q) is irrelevant for constantf(k). Figure lO(a) clearly demonstrates the superiority of 
the quadratic approximation to E @ ) ,  in agreement with the findings of Methfessel et a1 
117-191. All methods give the same RMS enor in figure lO(a) when N equals 3, because 
the quadratically interpolated e(k) is then accidentally linear. Considering next figure 
10(b), v(k)  = cos(m) + cos(ry) + cos(nz)), we note that the (qq) method is superior, 
as expected. It is surprising that the (Iq) method is doing so poorly, in particular also 
with respect to the linear method (U), but this is due to the fact that the (Iq) method, for 
consistency with the approach of Methfessel et a1 [19] uses a linear (least squares) 
approximation of@) in the large tetrahedra. which have k-points at the corners and the 
midpoints of the edges, whereas the (11) method uses a separate linear interpolation in 
each of the eight smaller tetrahedra into which a large tetrahedron may be subdivided 
(see figure 1). Apparently, the advantage of a finer division in the (U) method, for the 
same k-point density, outweighs the advantage of the quadratic interpolation of ~ ( k )  in 
the (19) method. (The phenomenon of different methods giving an identical log(Rhfs) at 
particular values of N, due to accidental linear behaviour of the quadratic interpolation, 
occurs in each case: in figure 10(b) (11). (Iq) and (qq) coincide at N = 3 because bothflk) 
and ~ ( k )  are linear; in figure lO(c) (Iq) and (qq) coincide at N = 7, becausef(k) is linear. 
In figure 1O(d) this happens at N = 13.) 

As has been found for the two-dimensional case, the (qq) integration shows con- 
siderably better convergence characteristics than all other methods. The difference with 
the other methods is particularly striking when the functionf(k) varies more rapidly. 
This may be analyzed more quantitatively. The almost linear dependence of Iog(RMs) 
on log(N) implies that the error behaves as: 

RMS(N) = "-8. (37) 
It is interesting to compare the exponents p for the various methods to evaluate the 
integrals, since these directly reflect the convergence rate (table 3). Roughly, the 
exponents f3 are twice as large for the quadratic integration as for the commonly used 
linear integration. So, to achieve the same accuracy with quadratic integration as with 
linear integration, in the limit of large Nonly about the square root of the number of k- 
points along an edge of the IW are needed. This is not quite true for the density of states 
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N 
Flgum 11. ConvergenceofthecohesiveenergywiththenumberolkHpoinlsalonganedge 
of the irreducible wedge (denoted by N) for anumber of elements. Linear interpolation was 
used for N even, quadratic interpolation was used for Nodd. 

(column (a))  but it definitely is for rapidlyvaryingflk) (columns (c) and ( d ) ) .  The major 
improvement occurs in going to (qq). The advantage will be less favourable near band 
crossings of course, but there is no reason to assume that the quadratic integration will 
be worse than the linear in such cases. Table 3 also demonstrates that an Iq method [19] 
is a significant improvement over U for the density of states (column (a ) ) ,  but not for any 
of the integrals involving property functions (columns (b), (c) and (4). 

The present quadratic tetrahedronmethod has been implemented in a self-consistent 
bandstructureprogram [U]. Since theprogram doesnot useshapeapproximations to the 
potentials, it is possible to calculate reliable cohesive energies (for other computational 
details we refer to [U]). As a further illustration of the performance of the quadratic 
method, we show in figure 11 the convergence of the cohesive energy with the number 
of k-points along the edge of the irreducible wedge (denoted by N. The total number of 
k-points used in the calculation scales like N3/6) for a number of elements. We can 
choose between linear or quadratic interpolation for N odd (see figure 1). but we used 
of course the quadratic method. For N even we must use the linear method. 

We took the cohesive energy for N = 9 as the converged result. The error in the 
cohesive energy for N = 9 was less than or equal to lo-' for all elements. This was 
checked for sodium, manganese and copper by calculating the cohesive energy for 
N =  11. 

As can be seen from figure 11, the convergence of the cohesive energy is far better 
with the quadratic method than with the linear method: going from an odd N (quadratic 
method) to N + 1 (even;linearmethod), theerrorincreasesabout anorderofmagnitude 
inspite ofthelarger numberofk-points. Onlyberyllium andcopperbehave anomalously. 
The quadratic method with N = 5 gives an average error in the cohesive energy of 
9.3 x The linear method needs N = 8 (which means a threefold increase of the 
number of k-points used in the calculation) to achieve the same accuracy (the average 
error for N = 8 is 1.5 x For beryllium and copper the quadraticmethod with N = 
5 gives worse results than the linear method with N = 4, but it is not the quadratic method 
givingalargererrortbanexpected(theerrorsforN = 5are 1.4 X 10-3forberyUiumand 
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2.2 X 10‘3forcopper,comparedtotheaverageerrorof9.3 X 10-4forN = 5 ) ,  butrather 
the linear method giving an error much smaller than expected (the errors for N = 4 are 
2.1 X for copper, compared to the average error of 
7.5 X 

The rate of convergence of the cohesive energy is also far better for the quadratic 
than for the h e a r  method: the exponent p is 2.3 for the linear method and 4.8 for the 
quadraticmethod(c0mpare table 3). So here too we find that when the quadraticmethod 
is compared to the linear method, far fewer k-points are necessary to obtain a desired 
accuracy. 

5. Summary and conclusions 

We have introduced a new method for the accurate evaluation of the surface integral 
Z(E) and the volume integral .!(E) using quadratic interpolation for both the property 
function f ( k )  and the dispersion relation ~(k). It is well known that quadratic inter- 
polation is essential for energies close to a Van Hove singularity, but we have stressed 
that it is imperative to evaluate the resulting integrals to high accuracy. The advantage 
of the present method over other methods of integral approximation is that the integrals 
can be accurately calculated in reasonable computer time. Indeed, the approach is based 
on a ‘machine accuracy’ evaluation of the integrals and may therefore be regarded as 
equivalent to a truly analytic evaluation of the integrals. As has been found before for 
the two-dimensional case, quadraticinterpolation is far better than linear interpolation, 
in the sense that far fewer k-points are needed to obtain a desired accuracy for the 
integrals. In particular the results presented show that (i) quadratic interpolation of E(&) 
combined with ‘exact’ evaluation of the integrals is capable of handling Van Hove 
singularities in the density of states (figure 4), (ii) the method considerably improves 
convergence with the number of k-points also at general energies and (iii) the quadratic 
methods’ inherent speed of convergence is only achieved if also the property function 
f ( k )  is quadratically interpolated (figure 10, table 3). 

Appendix 1. The elliptic cylinder 

For some of the quadratic forms parametrizations can be found such that the evaluation 
of the integrals using quadratic interpolation can be done analytically. As an example, 
explicit expressions for the integrals will be given in case the quadratic surface is an 
elliptic cylinder. 

for beryllium and 7.1 X 
The errors for N = 4 are even smaller than for N = 6. 

The integrals to be evaluated are 

~ P , ( X , Y . ~ ) ~ @ -  (41  +wZ + qsy2))dxdydz (Al.l) 

where pl(x,y,  z)  = 1, x , y ,  z ,  x z ,  xy, xz, yz ,yz ,  z2 fori  = 1,2, . . ., 10. We parametrize 
the surface by the transformation 

V 

(A1.2) 
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The faces of the tetrahedron can be given in the form 

G Wiesenekker and E J Baerends 

nixx + niyy + ) z ~ , L  = c, (A1.3) 
where n, is a vector normal to face j of the tetrahedron. The domain in (U, U) space will 
be bounded bv functions of the form 

(i = 1,2,3,4) 

(Al.4) 

From (A1.4) it is clear that the integrals can be evaluated as the iterated integrals 
gl(Rtgz(E)eos(u)+ g,(Rsin(U) 

1 
d u p i ( E , u , u ) r .  (A1.5) 

Explicit expressions for the integrals are as follows (for clarity, the energy dependence 
is dropped and the Jacobian is not included): 
I, = h,u - h3 cos(u) + hz sin(u) (A1.6a) 

I ,  = $h,u - +h3 cos2(u) + h ,  sin(u) + Ih, cos(u) sin (U) (A1.6b) 

I 3  = +h3u - h ,  cos(u) - $h2 cos2(u) - Ih3 cos(u) sin(u) (A1.6~) 

+ hlh2 si+) + (fh: - #hi) cos@) sir&) (A1.64 

= Ih,u - hh3 cos3(u) + fh2 sin(u) + Ihl cos(u) sin(u) 

+ &h2 cosz(u) sin(u) (A1.6e) 
(A1.6fJ 

I d‘ I 2 4548 v m  fm+rmmJw + / 3 m i O @ )  

14 = (Ihl + th$ + fh:)U - h l h ~  COS(U) - Ihzh3 COS2(U) 

I b  = -fhi  cos2(u) - f h ,  cos’(u) + f h3  sin3(u) 
I7 = Ih,h,u - $h,h, cosz(u) - &h,h, cos3(u) + (4hz + fh:)sin(u) 

+ Ah! cos*(u) sin(u) + th: sin3@) (A1&) 
I ,  = $h,u - gh, cos(u) - $h, cos(u) sin(u) - fh3  cos(u) sin2(u) 

+ f h ,  sin3&) (A1.6h) 
I ,  = Ih,h3u + (4hf + $hi) COS(U) - hhlhz c~s’(u) - &h$ cos3(u) 

- &h,h3 cos(u) sin(u) - &h$ cos(u) sin2(u) + +hzh3 sin3(u) 

+(hfh,  + th:)sin(u)+ (Ih,h: -Ih,h:)cos(u)sin(u)+ (IhIh: -th,h$) 
x cos(u) sin(u) + ah$ cosz(u) sin(u) - 6h: cos(u) sin2@) 

+ fh,h: sin3(u). (A1.6j) 

(A1.60 

I , o  = &hi +Ihl h$ +Ihl h:)u- (h:h3 + Bh$)cos(u) - h ,hZh ,co~~(~)  - fh$h3c0s3(u) 

Appendix 2. The range of a quadratic form over a simplex 

In bandstructure calculationsoften the range [.cmin, of the (interpolated) dispersion 
relation ~ ( k )  has to be calculated, e.g. to narrow down the energy range in which the 
Fermi energy has to be searched. When using quadratic interpolation for E(&),  smin and 
smax are also needed for accurate numerical integration of the surface integral I ( E )  to 
obtain the volume integralJ(E) (see appendiv 2 of [20]). 

.. . ,  
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The range is easily calculated when using linear interpolation for E@): E,, is the 
minimum of ( E ~ , E ~ , E ~ , E . , )  and E- is the maximum of ( c ~ , E ~ , E ~ , E ~ ) ,  where 
(e1, c2, E ~ ,  E.,) are the energies in the four corners of the tetrahedron. When using 
quadratic interpolation for &(k), the calculation of the minimum and maximum energy 
is more involved. We construct algorithms for the one-, two- and three-dimensional 
case. 

A2.1. The one-dimemional case 

For the one-dimensional case, the simplex is an interval [xl, x2]  and the quadratic form 
is a parabola 

(A2.1) &(X)  = 41 + q 2 x  + q3x2. 
The parabola has two side extrema at the endpoints of the interval: 

+ I )  = 41 + 42x1 + 43x: (A2.W 
4%) = 41 + qzxz + 43x1 (A2.26) 

and has an extremum at the point xj where 

de/& = 42 + 2qSxj = 0 (A2.3) 

with energy 

+ 3 )  = 41 - 411443. (A2.4) 

We only have to consider extrema for which x l  c x 3  S x2. The range of the parabola is 

[min(&(xl)7 + ) ,  m 4 + 1 ) ,  + Z ) .  & ) ) I .  

A2.2 The two-dimensional case 

For the two-dimensional case, the simplex is a triangle with corners (sl, s2, s3) and the 
quadratic surface is an ellipse, a hyperbola, a parabola or a straight line. We first note 
that the range of the quadratic form 

(A2.5) 

is not changed by an affine transformation of both the triangle and the quadratic form. 
Asthe rangeis more easilycalculatedif the triangle is the triangle with the comers (0, 0), 
(0 , l )  and ( l , O ) ,  we apply the affine transformation 

(A2.6) 

where 0 .s U s 1,0 s U =z 1 - U. The quadratic form in (x ,  y )  becomes a quadratic form 
in the variables (U, U) 

(A2.7) 

Now for each U ,  (A2.7) represents a parabola in the variable U. These parabolas have 
the 'side extrema' 
u = o :  44 = 41 + 42u + 44uz (A2.8a) 

+ , Y )  = 41 + 42x + 43Y + 44x2 + 45.v + 46Y2 

k = SI + U ( S ~  - SI) + U ( S ~  - SI) 

&(U, U) = 41 + 42u + q,u + q4u2 + q5uu + q6u2.  

u = l - U :  &(U) = 41 + 43 + 46 + (42 - 43 + 45 - 2q6)u + (44 - 45 + 46)uz. 
(A2.86) 
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So the 'side extrema' are parabolas in the variable U, and the range of the parabolas 
(A2.8a),  which we will denote by [ E , , , , ~ ~ ,  E-]] ,  and (A2.8b),  which we will denote by 
[E,, ,~"~. sm4,  can be calculated using the algorithm for the one-dimensional case. The 
parabolas (A2.7) have 'extrema' at the points (U, .,,(U)) where 

(a&(& u)/do)lo=u, = 43 + 45u + 360, = 0: 

with energy 
(A2.10) 

Sothe'extrema'arealsoparabolasintheparameteru. Weonly have toconsiderextrema 
for which 
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U d U )  = (-43 - 45u)/246 
(A2 .9 )  

E ( U )  = 41 - d / 4 4 6  + u(4z - 434&46) f u2(44 - d/4%),  

O S 0 , s l - u  O S U S l .  (A2.11) 

This linear inequality can be easily solved for U and the range of the parabolas (A2.10) 
[ E , ~ " ~ ,  E ~ . ~ ]  can be calculatedusing the algorithm for the one-dimensional case. Finally, 
the range of the quadratic form over the triangle becomes 

[min(E,i.l, ~, i"z .  Emin3), ma(EmBxi, ~ m a a .  ~ m a x 3 ) I .  

A2.3. The three-dimensional case 
For the three-dimensional case, the simplex is a tetrahedron with corners (sl, sz, s3, s4) 
and the quadratic form is one of the forms given in table 2. A s  for the two-dimensional 
case, we reduce the tetrahedron to the standard tetrahedron with the corners (0, 0, 0), 
(LO, 0), (0,1,0) and (O,O, 1) by the affine transformation 

(A2.12) 

where 0 < u s  1, 0 S U =z 1 - U, 0 S w S 1 - U - U. The quadratic form in ( x , y ,  z) 
becomes a quadratic form in the variables (U. U, w )  

k = SI + u(s* - SI) + u(s3 - sl) + w(s* -SI) 

E ( U ,  U ,  w) = q1 + qzu + q,u + q,w + q5u2 + qauu + q,uw + q8uz 

+ qquw + qlOw2. (A2.13) 

For each U and U, (A2.13) represents a parabola in the parameter w .  These parabolas 
have 'side extrema' 
W = Q  E(U,  U) =41 f q z U  + 430 + 45Uz f q6UU f q , U 2  ( A 2 . 1 4 ~ )  
w = 1 - U  - U: €(U, U) = 41 + 44 + 410 + 4 7 2  - 44 + 47 - 2910) 

+ 4 4 3  - 44 + 49 - 2410) + u2(45 - 47 + 410) 

+ uu(q6 - 47 - 49 f 2410) + u2(q8 - 49 + 410) (A2.14b) 

A s  can be seen from (A2.14), the 'side extrema' are two-dimensional quadratic forms 
in the parameters U and U, where U and U vary over the standard triangle. So the range 
of the 'side extrema' (A2.140) [ ~ d " ~ ,  &maxl] and (A2.14b) E,&] can becalculated 
using the algorithm for the two-dimensional case. 

( a d u ,  U, W ) / a W ) l w = w e x ~  

The parabolas (A2.13) have 'extrema' at points (U, U, w,,,(u, U)) for which 

44 + 47u + 49u + &ioWcxt = 0: 

We,, = (-44 - 47u - 49'J)/2410 (A2.15) 
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Figure A l .  The solution ofthe inequality(A2.17) 
consists of the projections in (U ,  U) spate (the 
lighter shaded quadrangle) of the intersection of 
the plane (A2.15) (the darker shaded quadrangle) 
with thestandard tetrahedron. 

U 

with energy 

&(U, U) = 91 - - q: + U ( q 2  - - 42;;) + u(q3 -E) + u ’ ( q ,  - $-) 
4q10 

f u l l  ( q 6 - -  g;) + - 6). (A2.16) 

We only have to consider extrema for which 
os we* s 1 - U  - U .  (A2.17) 

The solution of this inequality consists of a triangle or a quadrangle (two triangles) in 
the (U, U)-plane. This may be seen as follows: equation (A2.15) shows that the points 
(U, U, w,,(u, U)) constitute a plane. Since only extrema inside the standard tetrahedron 
have to be considered, the relevant (U, U) points in the (U, U)-plane are found by the 
projection of the part of the (U, U ,  wut(u, U))-plane that is interior to the standard 
tetrahedron on the (U, u)-plane (figure Al).  

As for the ‘side extrema’, the ‘extrema’ are two-dimensional quadratic forms in the 
parameters U and U, where U and U vary over the triangle or quadrangle, and the range 
of the quadratic form (A2.14) E,&] can be calculated using the algorithm for the 
two-dimensional case. Finally, the range of energy of the quadratic form over the 
tetrahedron becomes [min(cdnl, cdn2, E-)), max(Emarl, E,,,&, E , ~ ) ] .  

References 

[l] Ashcroft N W and Mennin N D 1976 Solid Stafe Physics (New York Holt-Saunders) 
[2] Van Hove L 1953 Pkys. Reu. 89 1189 
[3] Phillips J C 1956 Pkys. Rev. 104 1263 
[4] GdatGandRaubenheimer LJ 1966Pkys. Reo. 144390 
[51 Jepsen 0 and Andersen 0 K 1971 Solid Safe Commwt. 9 1763 
[6] Lehmann G and Taut M 1972 Pkys. SIaNs Solidi b 54 469 
[7] Rath J and Freeman A J 1975 Pkys. Reo. B 11 2109 
[E] Kaprzyk S and Mijnarends P E 1986 I.  Pkys. C: Solid StaIe Phys. 19 1283 
[9] Kurganskii S I, Dubrwskii 0 I and Domashevskaya E P 1985 Phys. Siam Solidi b 129 293 

[lo] Ashraff J A and Loly P D 1987 I.  Pkys. C: Solid State Phys. 20 4823 
1111 MuellerFM,GarlandJW,CohenMHandBennemanKH1971Ann. Phys., ”6719 
1121 Gilat G 19723. Compur. Pkys. 10432 
[13] Reser B I 1983 Pkys. Status Solidi b 116 31 
[14] Chen A B 1977 Phys. Reo. B 6 3291 



6142 

[IS] CookeJFandWoodR1972Pkys. Reu.B51276 
1161 MacDonald A H ,  VoskoSHandColeridge PT1979J. Phys. C: SolidSrate Phys. 122991 
[17] MetNessel M S, Boon M H and Mueller F M 1983 I .  Phys. C: SolidSrrrle Phys. 16 L949 
[IS] Boon M H, Methfessel M S and Mueller FM 1986 1. Phys. C: SolidState Phys. 19 5337 
[19] Methfessel M S, Boon M H and Mueller F M 1987 I. Pkys. C: Solid Srule Pkys. U) 1069 
1201 Wiesenekker G ,  Te Velde G and Baerends E J 1988 1. Phys. C: Solid Slale Phys. 21 4263 
1211 JeJittoJ R 1969J. Phys. Chem. So/ids30M)9 
[22] Samuel P 1988 Projectiue Geometry (New York Springer) 
[U] Te Velde G and Baerends E J 1991 Pkys. Reu. B (submitted) 

Te Velde G 1990 PkD Thmb Free University, Amsterdam 

G Wiesenekker and E J Baerends 


